Multi-coloring and Mycielski’s construction

نویسنده

  • Tim Meagher
چکیده

We consider a number of related results taken from two papers – one by W. Lin [1], and the other D. C. Fisher[2]. These articles treat various forms of graph colorings and the famous Mycielski construction. Recall that the Mycielskian μ(G) of a simple graph G is a graph whose chromatic number satisfies χ(μ(G)) = χ(G)+1, but whose largest clique is no larger than the largest clique in G. Extending the work of Mycielski, the results presented here investigate how the Mycielski construction affects a related parameter called the k chromatic number χk(G), developing an upper and lower bound for this parameter when applied to μ(G). We then prove that there are infinite families of graphs that realize both the upper and lower upper bounds. Alongside these main results, we also include a remarkable curiosity, first found by Fisher, that although the fractional chromatic number of a graph G might be expressible as a/b in lowest terms, that does not necessarily imply that there exists a proper coloring of G with the belement subsets of an a-element set. We also demonstrate that the ratio χk(G)/k, where χk(G) denotes the k-tuple chromatic number, is not a strictly decreasing function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Backbone Colorings and Generalized Mycielski’s Graph

For a graph G and its spanning tree T the backbone chromatic number, BBC(G,T ), is defined as the minimum k such that there exists a coloring c : V (G) → {1, 2, . . . , k} satisfying |c(u) − c(v)| ≥ 1 if uv ∈ E(G) and |c(u)− c(v)| ≥ 2 if uv ∈ E(T ). Broersma et al. [1] asked whether there exists a constant c such that for every triangle-free graphG with an arbitrary spanning tree T the inequali...

متن کامل

Simple Graphs as Simplicial Complexes: the Mycielskian of a Graph

Harary [10, p. 7] claims that Veblen [20, p. 2] first suggested to formalize simple graphs using simplicial complexes. We have developed basic terminology for simple graphs as at most 1-dimensional complexes. We formalize this new setting and then reprove Mycielski’s [12] construction resulting in a triangle-free graph with arbitrarily large chromatic number. A different formalization of simila...

متن کامل

Backbone Colorings and Generalized Mycielski Graphs

For a graph G and its spanning tree T the backbone chromatic number, BBC(G,T ), is defined as the minimum k such that there exists a coloring c : V (G) → {1, 2, . . . , k} satisfying |c(u) − c(v)| ≥ 1 if uv ∈ E(G) and |c(u)− c(v)| ≥ 2 if uv ∈ E(T ). Broersma et al. [1] asked whether there exists a constant c such that for every triangle-free graphG with an arbitrary spanning tree T the inequali...

متن کامل

On the Chromatic Numbers of Infinite Graphs

In this paper, we survey some of the results and open questions regarding colorings of infinite graphs. We first introduce terminology to describe finite and infinite colorings, then offer a proof of the De Bruijn-Erdős Theorem, one of the primary tool for studying the chromatic number of infinite graphs. We show how the De Bruijn-Erdős Theorem allows us to extend results of finite graphs of ar...

متن کامل

Mycielskians and matchings

It is shown in this note that some matching-related properties of graphs, such as their factor-criticality, regularizability and the existence of perfect 2-matchings, are preserved when iterating Mycielski’s construction.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010